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Abstract. In recent years, the demand for rice in Africa has been growing rapidly, and in order to meet this demand, the rice 

cultivation area is also expanding rapidly, thus it is of great significance to monitor the rice cultivation in Africa. The spatial 10 

and temporal distribution of rice cultivation in Africa is complex, making it difficult to use a climate-based rice identification 

method, and the existing rice distribution products are all grid based statistical data with low resolution, unable to obtain 

accurate rice field location and available labels. To address these two difficulties, based on time-series optical and dual-

polarisation SAR data, this study proposes a sample set construction method by fast coarse positioning assisted visual 

interpretation, and a feature importance guided supervised classification combining multiple temporal optical and SAR 15 

features to reduce the impact of rice diversity in Africa. Firstly, we use the time-series statistical features of VH data for fast 

coarse positioning and screening of possible rice areas, and combine multiple auxiliary data for visual interpretation to make 

sample set; secondly, based on the complementary information in SAR data and optical data, the 20 meter Africa rice 

distribution map of 2023 was completed by combining the object-oriented segmentation results of temporal optical images 

and the pixel based classification results of temporal SAR data features after feature selection. The average classification 20 

accuracy of the proposed method on the validation set is more than 85%, and the R2 of the linear fit to various existing 

statistical data is more than 0.9, which proves that the proposed method can achieve the spatial distribution mapping of rice 

under the complex climatic conditions in a large region, providing crucial data support for rice monitoring and agricultural 

policy development. The dataset is available at https://doi.org/10.5281/zenodo.13729353 (Jiang, Zhang et al. 2024). 

1 Introduction 25 

Rice is the staple food for half of the world's population (Kuenzer and Knauer 2013), providing over a quarter of the 

calories for approximately half of the population (Wu, Zhang et al. 2022), playing an important role in maintaining global 

food security and also crucial to the economies of many developing countries (Seck, Diagne et al. 2012, Ajala and Gana 

2015). In 2021, rice accounted for approximately 8.3% of the world's major crop production (FAO 2023). In Africa, rice 

accounted for approximately 3.8% of the main crop yield and 4.7% of the global rice production. Despite its current modest 30 
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share, the demand for rice in sub-Saharan Africa is increasing at over 6% annually due to population growth, urbanization, 

and changes in consumer preferences, surpassing any other staple food (Arouna, Fatognon et al. 2021). In order to meet the 

higher demand for rice, the synchronous growth of local rice production and imports in Africa, and the expansion of rice area 

rather than the increase in production, are the main driving forces for the increase in domestic production. In the past thirty 

years, the cultivated land area has expanded by about 400,000 hectares per year (Yuan, Saito et al. 2024). 35 

In 2023, in order to promote food and nutrition security in Africa, the African Rice Center proposed the 2030 Africa Rice 

Research and Innovation Strategy (AfricaRice 2023) to transform the rice based agricultural food system, and the rice area in 

Africa will continue to grow. Meanwhile, rice cultivation and production are important sources of income for a large number 

of African households (Hussain, Huang et al. 2020). However, rice cultivation in Africa also faces many challenges. Firstly, 

Africa is highly susceptible to the impacts of climate change, such as extreme weather events, changes in precipitation 40 

patterns, and rising temperatures, which can have a significant impact on agricultural production (Field and Barros 2014, 

Ogisi and Begho 2023). Land use changes across Africa, particularly urban expansion and deforestation, also influence the 

distribution of rice cultivation areas (Lambin and Geist 2008, Bren d’Amour, Reitsma et al. 2017). Consequently, it is 

essential to obtain high-resolution maps of rice spatial distribution in Africa for monitoring the condition of rice cultivation 

across the continent. 45 

In recent years, the global crop mapping datasets that include rice in Africa mainly include SPAM2010 (Yu, You et al. 2020), 

GAEZ+2015 (Global Agro Ecological Zones) (Frolking, Wisser et al. 2020), SPAMAF2017 (International Food Policy 

Research 2020), and CROPGRIDS (Tang, Nguyen et al. 2023). SPAM2010 and SPAMAF2017 datasets are based on the 

SPAM model (Spatial Production Allocation Model) developed by the International Food Policy Research Institute (IFPRI), 

which utilizes geographic spatial data such as land use types and crop statistical data as inputs to make reasonable estimates 50 

of crop distribution within the decomposed units using a cross entropy approach, with a spatial resolution of 5 minite 

(~10km). GAEZ+2015 utilized the GAEZ model and FAO's crop statistical data to generate grid distribution products for 26 

crops, with a spatial resolution of 5 minite (~10km). CROPGRIDS has generated the latest global georeferenced dataset of 

173 crops using 26 published grid datasets, with a spatial resolution of 0.05° (~5.5km). The existing datasets have low 

resolution and are all grid maps rather than spatial distribution maps. Moreover, these data is generally outdated, making 55 

them of limited significance for monitoring rice cultivation in Africa. 

Due to the complementarity of information between SAR data and optical remote sensing data, current large-scale rice 

mapping benefits from multi-source data that combines SAR data and optical remote sensing data as data sources (Han, 

Zhang et al. 2021, Shen, Pan et al. 2023, Ginting, Rudiyanto et al. 2024). Current rice mapping methods are usually divided 

into: 1) Phenology-based classification methods. For example, Qiu (Qiu, Li et al. 2015) utilized the CCVS (the Combined 60 

Consideration of Vegetation phenology and Surface water variations) index, constructed using LSWI and EVI during the 

rice heading and transplanting stages, to map rice in the complex terrain of southern China. Similarly, Zhang (Zhang, Shen et 

al. 2023) employed the SPRI index, which describes the growth status from the transplanting to maturity stages, to achieve 
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sample-free mapping of double-cropping rice. These methods do not require sample data but rely heavily on accurate 

phenological information. 2) Methods leveraging time-series curve similarity measures, such as DTW (Dynamic Time 65 

Warping) (Guan, Huang et al. 2016) and its improved version TWDTW (Time Weighted Dynamic Time Warping) (Singh, 

Rizvi et al. 2021, Tian, Li et al. 2024), requiring only a small number of rice samples to obtain a standard rice growth curve; 

3) Supervised classification methods, including various machine learning methods (Wang, Zang et al. 2020, Zhang, Liu et al. 

2020, You, Dong et al. 2021) and rapidly developing deep learning methods in recent years (Zhu, Zhao et al. 2021, Sun, 

Zhang et al. 2023). These methods offer several advantages for rice mapping. They do not require phenological information, 70 

making them adaptable to different regions and growing conditions. Additionally, they provide high classification accuracy 

and robustness when large amounts of labelled sample data are available. This allows for more precise identification and 

mapping of rice fields, even in complex landscapes or where other methods struggle. However, the effectiveness of these 

approaches depends on the availability and quality of the training data. 

The first challenge in mapping rice in Africa lies in the significant temporal and spatial variability of rice cultivation due to 75 

its tropical and subtropical climate, as illustrated in Fig. 1. The data in this figure is derived from the rice calendar product 

RiceAtlas (Laborte, Gutierrez et al. 2017) published in 2017, annotating the months when the main and secondary seasons of 

rice planting in Africa end and harvest begins. African rice cultivation includes both single and double cropping systems, 

with variations in planting times and growth durations across different seasons. This makes it difficult to apply a uniform 

phenological description for mapping rice across the entire continent. Notably, large areas of rainfed rice cultivation 80 

(Balasubramanian, Sie et al. 2007) in Africa lack the distinct flooding signals typical of irrigated rice, which are commonly 

used in widely adopted rice mapping methods that rely on detecting flooding periods (Guo, Jia et al. 2019, Zhan, Zhu et al. 

2021, Wei, Cui et al. 2022). Consequently, phenology-based rice mapping methods are challenging to apply in Africa. 

Similarly, DTW-based approaches are difficult to implement due to the variability in rice cropping intensity and phenology, 

which hinders the identification of a standard rice growth curve. Therefore, integrating time-series data with supervised 85 

classification emerges as the primary strategy for mapping rice spatial distribution in Africa. However, the main challenge of 

this approach lies in constructing sample set. Existing rice distribution products for Africa are grid-based, making it difficult 

to quickly identify rice-growing areas for sample set construction. Moreover, the diversity of rice cultivation in Africa—

spanning phenology (including cropping intensity), farming practices (irrigated/rainfed), and environmental conditions 

(plains, hills)—complicates the identification of rice fields and makes it challenging to ensure the representativeness and 90 

completeness of the samples.  
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Figure 1. Rice planting calendar: (a) main rice season planting end date, (b) secondary rice season planting end date, (c) main rice 

season harvest start date, and (d) secondary rice season harvest start date. Data sourced from RiceAtlas. 

In recent years, the Google Earth Engine (GEE) platform has provided robust support for high-resolution crop mapping. 95 

GEE integrates extensive remote sensing data and geographic information system tools, enabling rapid processing and 

analysis of massive time-series datasets (Gorelick, Hancher et al. 2017). In particular, Sentinel satellite data (Sentinel-1 and 

Sentinel-2) have been widely applied in crop monitoring and mapping due to their high spatial resolution and frequent 

temporal coverage (Saad El Imanni, El Harti et al. 2022, Waleed, Mubeen et al. 2022, Luo, Lu et al. 2023, Zoungrana, 

Barbouchi et al. 2024). Additionally, the GEE platform supports various supervised classification methods, including 100 

Random Forest (RF), Support Vector Machine (SVM), and Classification and Regression Trees (CART) (Liu, Zhai et al. 

2020, You, Dong et al. 2021, Avcı, Budak et al. 2023). By integrating multi-source time-series Sentinel data with these 

supervised classification algorithms available on the GEE platform, it has become feasible to achieve large-scale, high-

resolution, and high-accuracy mapping of rice distribution in Africa. 
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In summary, this study employs a multi-source time series data approach combined with classification algorithms to produce 105 

large scale and high-resolution rice distribution maps across in Africa. Specifically, to address the challenge of sample 

collection, time-series statistical features from Sentinel-1 VH data are used for fast coarse positioning of potential rice-

planting areas, followed by visual interpretation using various auxiliary datasets to create reliable samples. During the 

classification stage, object-based segmentation results derived from Sentinel-2 optical time-series data are integrated with 

feature importance guided Random Forest classification results from Sentinel-1 SAR time-series to obtain more precise rice 110 

paddy boundaries and reduce noise in heterogeneous landscapes. This approach successfully generated a 20-meter resolution 

rice distribution map for Africa in 2023. The research could provide scientific support for rice management in Africa, 

contribute to improving rice yields, ensure food security, and offer data for addressing climate change. The findings are 

expected to be valuable for policymakers, agricultural scientists, and farmers alike. 

2 Materials 115 

2.1 Study site 

In this study, 34 countries with rice harvested areas exceeding 5,000 hectares, as reported by FAO statistics in 2022, were 

selected as the study regions for rice spatial distribution mapping (FAO 2022), shown in Fig. 2. These include 3 countries in 

Northern Africa (Egypt, Morocco, Sudan), 15 countries in Western Africa (Benin, Burkina Faso, Côte d’Ivoire, Gambia, 

Ghana, Guinea, Guinea-Bissau, Liberia, Mali, Mauritania, Niger, Nigeria, Senegal, Sierra Leone, Togo), 5 countries in 120 

Central Africa (Angola, Cameroon, Central African Republic, Chad, Democratic Republic of the Congo), and 11 countries in 

Eastern Africa (Burundi, Ethiopia, Kenya, Madagascar, Malawi, Mozambique, Rwanda, South Sudan, Uganda, Tanzania, 

Zambia). The regional division follows the United Nations’ Geoscheme (United Nations 2013). 
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Figure 2. Study site: 34 countries in Africa with rice harvest areas exceeding 5000 hectares in 2022 according to FAO (diagonally 125 
marked area) 

The climatic variations across different sub regions of Africa result in diverse rice cultivation practices. In Northern Africa, 

dominated by desert and Mediterranean climates, the hot and arid conditions, coupled with scarce rainfall, limit rice 

cultivation to areas with stable water resources, such as the Nile River basin. Rice is primarily cultivated as a single season 

crop, relying heavily on irrigation systems. In Western Africa, coastal regions experience tropical rainforest climates, while 130 

the interior regions have tropical savanna climates. Rainfall decreases progressively from the coast to inland, leading to 

rainfed rice cultivation predominantly in coastal areas during the rainy season, which typically spans from May to October, 

allowing for single-season planting. In inland areas, rice cultivation often depends on flood irrigation or irrigation systems, 

enabling multi-season cropping. Central Africa also features tropical rainforest and savanna climates, but with uneven 

rainfall distribution across seasons. As a result, phenological patterns of rainfed rice vary widely in rainforest areas, while 135 

rice cultivation in savanna areas partly depends on seasonal flooding or irrigation. In Eastern Africa, the highland regions are 

characterized by warm and humid mountain climates, where rice cultivation primarily relies on natural rainfall, with the 

main rainy seasons occurring from April to June and October to December. In contrast, lowland areas have tropical savanna 

climates, requiring irrigation support for rice cultivation. 
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2.2 Data source 140 

2.2.1 Satellite data 

The main data sources in the study are time-series SAR data and optical data. Specifically, the monthly average VH and VV 

data of Sentinel-1 satellite for the whole year of 2023 were obtained as SAR data input on the GEE platform, and the 

monthly average B3, B4, B8, and B8A band data of Sentinel-2 satellite for the whole year of 2023 were obtained as optical 

data input. The substantial volume of data, covering multiple spectral and temporal dimensions, enhances the model’s 145 

capability to detect seasonal variations and accurately map rice fields in diverse agro-ecological zones across Africa. Table 1 

presents the number of satellite images utilized for the monthly average composite across each country within the study site. 

A total of 29,722 Sentinel-1 (S1) images and 387,439 Sentinel-2 (S2) images were employed in the experiment. 

Table 1. Number of satellite images used in the study 

Num Country S1 image S2 image  Num Country S1 image S2 image 

1 Angola 418 19765 18 Madagascar 1106 15324 

2 Benin 365 2142 19 Malawi 441 3008 

3 Burkina Faso 486 5126 20 Mali 1400 20949 

4 Burundi 207 1126 21 Mauritania 1274 17083 

5 Cameroon 1319 8253 22 Morocco 1448 8933 

6 
Central African 

Republic 
963 9542 23 Mozambique 1877 26645 

7 Chad 1139 19564 24 Niger 1565 18297 

8 Côte d'Ivoire 514 5575 25 Nigeria 1677 14716 

9 
Democratic Republic 

of Congo 
3762 55967 26 Rwanda 238 917 

10 Egypt 1052 16529 27 Senegal 379 4192 

11 Ethiopia 1625 17062 28 Sierra Leone 213 1872 

12 Gambia 86 791 29 South Sudan 659 9882 

13 Ghana 413 4407 30 Sudan 488 29213 

14 Guinea 515 4704 31 Togo 120 1822 

15 Guinea-Bissau 142 1233 32 Uganda 639 4534 

16 Kenya 972 8917 33 
United Republic of 

Tanzania 
1427 14807 

17 Liberia 245 2304 34 Zambia 548 12238 

 150 

2.2.2 Land cover data 

During the sample set construction phase, cropland data from the European Space Agency's ESA WorldCover data for 2020 

and 2021 were used as a reference. By integrating land cover data from two consecutive years, the study ensured better 
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temporal consistency and reliability in sample selection. The use of this land cover data also facilitated the initial separation 

of rice and non-rice areas, supporting more precise training and validation in the subsequent classification processes. 155 

2.2.3 Rice Grid Data 

During the sample set construction phase, rice grid data from the CROPGRIDS (Tang, Nguyen et al. 2023) grid distribution 

product released in 2023 was used as a reference. 

2.2.4 Administrative distribution data of rice planting intensity 

In the comparison stage with statistical data, the administrative distribution data of rice planting intensity in RiceAtlas 160 

product (Laborte, Gutierrez et al. 2017) were used to map the rice paddy area in the mapping results to planting/harvesting 

area, and then compared with statistical data. The areas without single and double season information were defaulted to 

planting single season rice. As shown in Fig. 3. 

 

Figure 3. Administrative distribution map of rice intensity from RiceAtlas 165 

2.2.5 Statistical data 

Three kinds of statistical data were used in the study, as shown in Table 2. 

Table 2. Statistical data on rice area used in the study 

Statistical Data Data Time Retrieve Time 

USDA(United States Department of Agriculture): 2023 2024/02 
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Rice planting/harvesting area in African countries 

(USDA 2023) 

FAO(Food and Agriculture Organization of the 

United Nations): Rice harvesting area in African 

countries (FAO 2022) 

2022 2024/03 

CARD(COALITION for African Rice 

Development): Rice planting/harvesting area in 

CARD countries (CARD 2022) 

2020/2021 2024/05 

 

3 Method 170 

 

Figure 4. Flowchart of the proposed rice mapping method (Optical images are from ©GoogleEarth) 

The workflow for mapping the spatial distribution of rice in Africa at a 20-meter resolution is depicted in Fig. 4. The study 

adopts a multi-source time-series data approach combined with a classifier to achieve large-scale, high-resolution mapping 

of rice distribution in Africa. The workflow is primarily divided into two main stages: sample set construction and object-175 

based classification incorporating feature selection. 
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In the sample set construction phase, VH time-series statistical features are used for the fast coarse positioning of potential 

rice-growing regions. This is further refined by visually interpreting the samples using ESA WorldCover cropland data, 

CROPGRIDS rice grid distribution, and optical image. 

During the classification phase, object-based segmentation is first performed on optical images to obtain super-pixel results, 180 

which helps mitigate the effects of speckle in SAR imagery, enhances classification accuracy, and better captures the 

complex spatial patterns of rice fields. The mean values of SAR data (VH, VV) and various radar vegetation indices derived 

from SAR data within these super-pixels are then used as input features. A random forest classifier is applied to train the 

model, which gives ranks of the importance of the input features. The most important features are selected for a subsequent 

classification to produce the rice paddy distribution map. Finally, accuracy validation is conducted using statistical data and 185 

validation datasets. 

3.1 Sample set construction combined with fast coarse positioning 

3.1.1 Fast coarse positioning of rice planting area 

Sun used the statistical features (max, min, variance) of VH time-series data for pseudo-color composite in rice mapping in 

Southeast Asia as input features for rice extraction (Sun, Zhang et al. 2023), In this pseudo-color feature map, rice appears 190 

purple (VHmin is small, VHmax and VHvariance are large). In the experiment, it was found that rice in Africa also exhibits 

similar behavior, as shown in Fig. 5. However, wetlands and other land features also exhibit similar characteristics. 

Therefore, it was only used for fast coarse positioning and preliminary screening of rice regions. 

 

Figure 5. Pseudo-color composite image (fast coarse positioning feature) and corresponding optical image in Africa (From 195 

©Google Earth) (a) Plain region (b) Hilly region (R: VHmax, G: VHmin, B: VHvariance) 
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3.1.2 Rice sample set construction  

During the experiment, it was found out that wetlands and other land cover types prone to misclassification with rice also 

appear as purple in the pseudo-color composite image described in Section 3.1.1. Therefore, multiple auxiliary datasets were 

used for visual interpretation to make rice sample set. Specifically, after positioning potential rice-plating areas, rice plots 200 

were identified and selected as rice samples by cross-referencing the intersections of the rice grid map from CROPGRIDS 

and cropland distribution maps with corresponding optical imagery. The cropland distribution maps used the union of the 

cropland classes from WorldCover for the years 2020 and 2021. Additionally, in some countries, existing studies or reports, 

as listed in Table 3, were consulted. 

Table 3. Reference for rice sample set construction in some countries 205 

Country Reference 

Benin (Loko, Gbemavo et al. 2022) 

Burkina Faso (Barro, Kassankogno et al. 2021) 

Egypt (Mathieu 2022) 

South Sudan (FEWSNET 2018) 

In the experiment, 50-300 rice plots were selected for each country, and 2000 rice points were randomly sampled from these 

plots as positive samples for the classifier input in each country's classification experiment. 

3.1.3 Negative sample set 

In the classification experiments conducted for each country, dozens of plots for each land cover type (non-rice cropland, 

built-up areas, water bodies, wetlands, forests, grasslands, etc.) were uniformly selected based on the WorldCover product. 210 

For each land cover type, 300 sample points were randomly selected as negative samples for the classifier input. 
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(a)                                                 (b)                                                      (c) 

Figure 6. Example of positive and negative sample regions (a) Optical image(From ©Google Earth) (b) WorldCover2021 from 

ESA (c) Fast coarse positioning feature 215 

3.1.4 Validation dataset 

The validation dataset was constructed similarly to the training sample set. For each country, the validation dataset includes 

1,000 rice sample points. Non-rice sample points were uniformly selected based on the number of land cover categories 

present in the WorldCover product for that country, with 100 sample points chosen for each category (with the cropland 

category containing only non-rice cropland samples). 220 

3.2 Object oriented supervised classification guided by feature importance 

3.2.1 SNIC Object oriented segmentation 

Monthly mean time-series of NDWI and NDVI data from 2023 were used as inputs to perform object-based segmentation 

using the Simple Non-Iterative Clustering (SNIC) algorithm (Achanta and Susstrunk 2017). This approach was adopted to 

reduce the fragmentation of rice paddy extraction results and enhance the clarity of rice paddy boundaries. The SNIC 225 

algorithm is a super-pixel segmentation method based on the principles of K-means clustering. It initializes seed points on a 

regular grid as initial cluster centers and assigns each pixel to the nearest cluster based on its distance from the cluster center 

in both color and spatial dimensions. Since the SNIC algorithm is non-iterative, it requires less computation time and 
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memory while ensuring connectivity, resulting in good segmentation performance. It is widely used in remote sensing 

applications (Tassi and Vizzari 2020, Wang, Meng et al. 2024). 230 

In the experiment, the SNIC algorithm was implemented on the GEE platform with the following parameter settings: seed 

distance (size) = 10, segmentation compactness = 0.5, connectivity = 8, and neighbourhood size = 100. 

3.2.2 Feature importance guided supervised classification  

To address the limitations of optical imagery caused by cloud cover in large-scale mapping, SAR features were utilized after 

object-based segmentation based on time-series NDVI and NDWI data. The mean values of SAR features within the 235 

segmented super-pixels were used as inputs for supervised classification to achieve more accurate large-scale, high-

resolution rice mapping results. This part of the study employed the Random Forest algorithm available on the GEE platform. 

Supervised classification experiments were first conducted for each country, with all SAR data features used as inputs to 

determine feature importance rankings. The top-ranked features for each region were then selected, and a second round of 

supervised classification was performed using these selected features to obtain the final mapping results. 240 

 

The SAR features used in the experiment included VH, VV, and four commonly used radar vegetation indices: RVI (Radar 

Vegetation Index), PRVI (Polarimetric Radar Vegetation Index), RFDI (Radar Forest Degradation Index), and DpRVIc 

(Dual-pol radar vegetation index for GRD data). The statistical features (max, mean, min, variance) for these indices in 2023 

were utilized, as defined in Table 4. 245 

Table 4. Index definition 

 
Simplified Formula 

RVI 

4∗𝜎𝐻𝑉

𝜎𝑉𝑉+𝜎𝐻𝑉
  

 (Charbonneau, Trudel et al. 2005, Li and Wang 2018) 

PRVI 
(1 −

𝜎𝑉𝑉

𝜎𝑉𝐻+𝜎𝑉𝑉
) ∗ 𝜎𝑉𝐻  

 (Chang, Shoshany et al. 2018, Sun, Zhang et al. 2024) 

RFDI 

𝜎𝐻𝐻−𝜎𝐻𝑉

𝜎𝐻𝐻+𝜎𝐻𝑉
  

 (Chhabra, Rüdiger et al. 2022) 

DpRVIc 
𝑞 ∗

𝑞+3

(𝑞+1)2 , 𝑞 =
𝜎𝐻𝐻

𝜎𝐻𝑉
  

 (Bhogapurapu, Dey et al. 2022) 

3.3 Accuracy on validation set 

The validation section first performs on the validation set, calculating the user accuracy (UA), producer accuracy (PA), F1-

score, and overall classification accuracy (OA) for rice and non-rice categories: 
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UA =
TP

TP + FP
  (1) 250 

PA =
TP

TP + FN
 (2) 

F1 = 2 ×
UA × PA

UA + PA
 (3) 

OA =
TN + TP

TN + TP + FN + FP
 (4) 

Where TP is true positive, FP is false positive, TN is true negative, and FN is false negative. 

4 Results 255 

In this section, the results and accuracy will be presented from five aspects: feature screening results, mapping and analysis 

of rice spatial distribution, comparison of rice area statistics results, validation set accuracy, and comparison of optical 

images. 

4.1 Feature importance 

Due to the few coverage of SAR images in Angola and Sudan, these two countries only use optical images as classification 260 

input features. In the experiments of the remaining 32 countries, a total of 24 statistical features (max, mean, min, and 

variance) of VH, VV, RVI, PRVI, RFDI, and DpRVIc were input into random forest training to obtain feature importance 

ranking results. The frequency of each feature in the top 25% of feature importance ranking for each country was calculated 

according to the UN divided African sub region, as shown in Table 5 and Fig. 7. 

Table 5. Regional statistics on the frequency of features appearing in the top 25% of importance rankings (descending order) 265 

Total Northern Western Central Eastern 

Feature/Frequency Feature/Frequency Feature/Frequency Feature/Frequency Feature/Frequency 

VH_variance 23 PRVI_variance 2 VH_variance 24 VH_variance 4 VH_mean 8 

VH_mean 18 VH_max 2 VH_mean 19 PRVI_mean 2 PRVI_mean 7 

PRVI_variance 17 VH_variance 2 PRVI_variance 18 PRVI_variance 2 VV_mean 7 

VH_min 17 PRVI_max 1 VH_min 17 VH_max 2 VH_variance 6 

PRVI_mean 16 PRVI_min 1 VV_mean 17 VH_min 2 VH_min 5 

VV_mean 16 VH_mean 1 PRVI_mean 16 VV_max 2 VV_variance 5 

VV_variance 15 VH_min 1 VV_variance 15 VV_mean 2 PRVI_variance 4 

VV_max 11 VV_mean 1 VH_max 11 VV_min 2 VV_max 4 

VH_max 10 VV_variance 1 VV_max 11 PRVI_max 1 VV_min 4 

VV_min 10 PRVI_mean 0 VV_min 10 PRVI_min 1 PRVI_max 3 

PRVI_min 9 RFDI_max 0 PRVI_min 9 DpRVIc_mean 1 PRVI_min 3 

DpRVIc_mean 8 RFDI_mean 0 DpRVIc_mean 8 DpRVIc_variance 1 VH_max 3 

PRVI_max 6 RFDI_min 0 PRVI_max 7 VH_mean 1 RFDI_mean 2 

RFDI_mean 4 RFDI_variance 0 RFDI_mean 4 VV_variance 1 DpRVIc_mean 2 
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RVI_mean 2 RVI_max 0 RVI_mean 2 RFDI_max 0 RFDI_min 1 

RFDI_min 1 RVI_mean 0 RFDI_min 1 RFDI_mean 0 RVI_mean 1 

RVI_min 1 RVI_min 0 RVI_min 1 RFDI_min 0 RVI_variance 1 

RVI_variance 1 RVI_variance 0 RVI_variance 1 RFDI_variance 0 RFDI_max 0 

DpRVIc_variance 1 DpRVIc_max 0 DpRVIc_variance 1 RVI_max 0 RFDI_variance 0 

RFDI_max 0 DpRVIc_mean 0 RFDI_max 0 RVI_mean 0 RVI_max 0 

RFDI_variance 0 DpRVIc_min 0 RFDI_variance 0 RVI_min 0 RVI_min 0 

RVI_max 0 DpRVIc_variance 0 RVI_max 0 RVI_variance 0 DpRVIc_max 0 

DpRVIc_max 0 VV_max 0 DpRVIc_max 0 DpRVIc_max 0 DpRVIc_min 0 

DpRVIc_min 0 VV_min 0 DpRVIc_min 0 DpRVIc_min 0 DpRVIc_variance 0 

 

 

Figure 7. Regional statistics on the frequency of features appearing in the top 25% of importance rankings (sort by feature) 

In Table 4, the features highlighted in red represent those with the highest frequency within the top 25% of importance 

rankings for each region (including features with tied frequencies). It can be observed that the top 25% features vary 270 

significantly across sub-regions, with the only common feature being VH_variance. Therefore, in the Random Forest 

supervised classification, each sub-region used the features ranked in the top 25% in frequency for that specific sub-region. 

Fig. 8 illustrates an example of selected features, focusing on an area southwest of Lake Alaotra in Madagascar. The 

classification features used in the supervised classification for this region include six features specific to East Africa: 

VH_mean, PRVI_mean, VV_mean, VH_variance, VH_min, and VV_variance. These features were combined into two 275 

groups for pseudo-color composites, where clear distinctions between rice fields and other land cover types, including 

wetlands and grasslands that are prone to misclassification, can be observed. This demonstrates that the selected features 

effectively differentiate rice from other land cover types, enabling accurate spatial mapping of rice distribution. Additionally, 

the mean values calculated from object-based segmentation of optical imagery improved the representation of SAR image 

noise and fragmented plots while preserving clear boundaries. 280 
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Figure 8. Example of pseudo-color composites using selected time-series SAR features: (a) optical image(From ©Google Earth) (b) 

pseudo-color composite 1 (R: VH_min, G: VH_variance, B: VH_mean) (c) mean values of pseudo-color composite 1 overlaid on 

the object-based segmentation result from NDVI time series (d) pseudo-color composite 2 (R: VV_variance, G: VV_mean, B: 

PRVI_mean); (e) mean values of pseudo-color composite 2 overlaid on the object-based segmentation result from NDVI time series. 285 

4.2 Results of rice spatial distribution mapping 

Fig. 9 shows the final 20 meter resolution spatial distribution map of rice across Africa. The green areas represent rice. The 

map on the right displays the gridded result at a 0.5-degree resolution, with the value in the lower left corner of each grid 

indicating the rice area, measured in 100 hectares per grid. 

  290 

Figure 9. Rice mapping result in Africa (a) 20 meter spatial distribution map (b) corresponding 0.5°grid map 

Table 6. Country-level statistics of rice area in Africa based on the 20m spatial distribution map for 2023. 

Num Country 
Paddy 

Area/Ha 

Single Season Paddy 

Area/Ha 

Double Season Paddy 

Area/Ha 

Planting 

Area/Ha 

1 Angola 30375 30375 0 30375 

2 Benin 149095 82340 66755 215851 

3 Burkina Faso 205356 137649 67707 273063 

4 Burundi 53626 4917 48709 102335 

5 Cameroon 210191 17003 193188 403379 

6 Central African Republic 70545 70545 0 70545 

7 Chad 283113 64938 218175 501287 

8 Côte d'Ivoire 727320 727320 0 727320 
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9 Democratic Republic of the Congo 841988 160733 681255 1523243 

10 Egypt 689114 689114 0 689114 

11 Ethiopia 155157 155157 0 155157 

12 Gambia 103316 0 103316 206632 

13 Ghana 355311 1562 353749 709060 

14 Guinea 1580359 1580359 0 1580359 

15 Guinea-Bissau 178277 178277 0 178277 

16 Kenya 29610 0 29610 59220 

17 Liberia 135214 135214 0 135214 

18 Madagascar 865405 193680 671725 1537131 

19 Malawi 120866 120866 0 120866 

20 Mali 502970 91772 411198 914169 

21 Mauritania 63672 498 63174 126846 

22 Morocco 40454 40454 0 40454 

23 Mozambique 415471 415471 0 415471 

24 Niger 45410 5246 40164 85573 

25 Nigeria 2446413 3157 2443256 4889668 

26 Rwanda 30984 0 30984 61969 

27 Senegal 202077 19757 182320 384397 

28 Sierra Leone 694314 694314 0 694314 

29 South Sudan 48605 48605 0 48605 

30 Sudan 52553 52553 0 52553 

31 Togo 97076 0 97076 194153 

32 Uganda 199103 29850 169253 368356 

33 United Republic of Tanzania 1088377 1015933 72444 1160821 

34 Zambia 83916 83916 0 83916 

 

Table 6 presents the country-level statistics of rice area in Africa based on the 20m spatial distribution map for 2023. The 

first column represents the rice paddy area from the 2023 mapping results, the second column shows the single season rice 295 

paddy area calculated based on the rice planting intensity information from RiceAtlas, and the third column represents the 

double season rice field area. The fourth column provides the total planting area, with all values reported in hectares. Where 

Paddy Area =  Single Season Paddy Area + Double Season Paddy Area (5) 
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Planting Area =  Single Season Paddy Area + 2 ∗ Double Season Paddy Area (6) 

The total rice paddy area across Africa in 2023 is approximately 12,795,631 hectares. Among the countries, three have rice 300 

areas exceeding 1 million hectares: Nigeria, Guinea, and Tanzania. Six countries fall within the range of 500,000 to 1 million 

hectares: Madagascar, the Democratic Republic of Congo (DRC), Côte d'Ivoire, Sierra Leone, Egypt, and Mali. Thirteen 

countries have rice areas between 100,000 and 500,000 hectares: Mozambique, Ghana, Chad, Cameroon, Burkina Faso, 

Senegal, Uganda, Guinea-Bissau, Ethiopia, Benin, Liberia, Malawi, and Gambia. Lastly, twelve countries have rice areas 

between 50,000 and 100,000 hectares: Togo, Zambia, Central African Republic, Mauritania, Burundi, Sudan, South Sudan, 305 

Niger, Morocco, Kenya, Rwanda, and Angola. The proportion of rice area by country is illustrated in Fig. 10(a). 

 

Figure 10. Proportion of rice area by country in Africa: (a) planting area, (b) paddy area (others: aggregate of countries with areas 

less than 500,000 hectares). 

In 2023, the total rice planting/harvest area in Africa is approximately 18,739,690 hectares. Five countries have more than 1 310 

million hectares of rice cultivation: Nigeria, Guinea, Madagascar, the Democratic Republic of the Congo (DRCongo), and 

Tanzania, listed in descending order by area, unless otherwise specified. Six countries have between 500,000 and 1 million 

hectares: Mali, Côte d'Ivoire, Ghana, Sierra Leone, Egypt, and Chad. Fourteen countries have between 100,000 and 500,000 

hectares: Mozambique, Cameroon, Senegal, Uganda, Burkina Faso, Benin, Gambia, Togo, Guinea-Bissau, Ethiopia, Liberia, 

Mauritania, Malawi, and Burundi. Nine countries have between 50,000 and 100,000 hectares: Niger, Zambia, Kenya, Central 315 

African Republic, Rwanda, Sudan, South Sudan, Morocco, and Angola. The proportion of rice planting area by country is 

shown in Fig. 10(b). 

Regarding single season rice paddy, 12 countries have more than 100,000 hectares: Guinea, Tanzania, Côte d'Ivoire, Sierra 

Leone, Egypt, Mozambique, Madagascar, Guinea-Bissau, the Democratic Republic of the Congo, Ethiopia, Burkina Faso, 

Liberia, and Malawi. For double season rice paddy, 10 countries exceed 100,000 hectares: Nigeria, the Democratic Republic 320 

of the Congo, Madagascar, Mali, Ghana, Chad, Cameroon, Senegal, Uganda, and Gambia. 
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Figure 11. Proportion of rice area by African sub-region: (a) paddy area, (b) planting area. 

Fig. 11 shows the distribution of rice area by sub-region in Africa. It can be seen that rice planting is primarily concentrated 

in Western Africa, followed by Eastern Africa and Central Africa, with the least in Northern Africa. Specifically, all 325 

Northern African countries plant single season rice, covering approximately 800,000 hectares, mainly in Egypt. In Western 

Africa, the single season rice area is around 3.7 million hectares, predominantly in Guinea, Sierra Leone, and Côte d'Ivoire, 

while the double season area is about 3.8 million hectares, mainly in Nigeria and Mali. In Central Africa, the single season 

rice area is approximately 300,000 hectares, and the double season area is about 1.1 million hectares, primarily in the 

Democratic Republic of the Congo. In Eastern Africa, the single season rice area is about 2.1 million hectares, mainly in 330 

Tanzania, Mozambique, and Madagascar, while the double season area is around 1 million hectares, primarily in Madagascar 

and Uganda. The specific distribution of major production areas is detailed in Table 7. 

Table 7. Distribution of Major Rice-Producing Regions in Africa 

Northern Africa 

Egypt Predominantly located in the Nile Delta and the Faiyum Oasis. 

Western Africa 

Nigeria Concentrated along the western side of the Kainji Reservoir, as well as along the Niger, Benue, 

Sokoto, and other rivers and their tributaries. 

Guinea Mainly distributed in the coastal plains of the Boffa region in the west, the plains of the 

Koundara region in the northwest, and along the Niger and Sankarani rivers and their tributaries 

in the east. 

Mali Primarily located along the Niger River and its tributaries in the central and eastern regions. 

Sierra Leone Concentrated in the western plains. 

Côte d'Ivoire Mainly found along the Bandama River in the northwest, the Bafing region in the west, and the 

northern areas. 

Central Africa 
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Democratic 

Republic of the 

Congo 

Predominantly located near Kinshasa and around Lake Mukamba. 

Eastern Africa 

Tanzania Concentrated in the Mapogoro and Itambaleo regions, the southern areas of Lake Victoria, 

southern Morogoro, and the Kilimanjaro region. 

Madagascar Mainly distributed in the western regions of Lake Alaotra, southwestern areas, and the 

Ankililoaka region. 

4.3 Comparison of rice area and statistical data 

Table 8 presents the statistical data of rice planting areas for 34 African countries with more than 5,000 hectares of rice area, 335 

listed in alphabetical order. The first column shows the rice planting/harvest area reported by the Coalition for African Rice 

Development (CARD) for its member countries in 2020/2021. The second column provides the 2022 rice harvest area data 

from FAO. The third column shows the 2023 rice planting/harvest area reported by USDA. The fourth column presents the 

2023 rice planting area derived from this study. All area units are in hectares. 

Table 8. Rice Area Statistics for African Countries 340 

Num Country 
2020/2021 

CARD /Ha 

2022 FAO 

Harvest/ Ha 
2023 USDA/Ha 

Planting 

Area/Ha 

1 Angola 8572 8572 8000 30375 

2 Benin 134840 134840 135000 215851 

3 Burkina Faso 221052 198473 220000 273063 

4 Burundi 50478 54441 0 102335 

5 Cameroon 296209 156739 285000 403379 

6 Central African Republic 8596 36981 / 70545 

7 Chad 184086 177108 190000 501287 

8 Côte d'Ivoire 581766 688201 730000 727320 

9 Democratic Republic of the Congo 1442356 1888472 1660000 1523243 

10 Egypt / 646316 630000 689114 

11 Ethiopia 60000 60000 60000 155157 

12 Gambia 60097 46418 65000 206632 

13 Ghana 414027 305000 325000 709060 

https://doi.org/10.5194/essd-2024-402
Preprint. Discussion started: 30 September 2024
c© Author(s) 2024. CC BY 4.0 License.



22 

 

14 Guinea 1650217 1627939 1650000 1580359 

15 Guinea-Bissau 126654 130291 120000 178277 

16 Kenya 82330 29615 30000 59220 

17 Liberia 240000 257000 240000 135214 

18 Madagascar 1600000 1598207 1600000 1537131 

19 Malawi 76962 75787 / 120866 

20 Mali 874031 888116 920000 914169 

21 Mauritania / 71000 75000 126846 

22 Morocco / 6320 8000 40454 

23 Mozambique 282000 290000 290000 415471 

24 Niger 12566 32414 30000 85573 

25 Nigeria 4320100 4580000 3500000 4889668 

26 Rwanda 31676 32253 / 61969 

27 Senegal 370750 372413 370000 384397 

28 Sierra Leone 944450 688549 825000 694314 

29 South Sudan / 30718 / 48605 

30 Sudan 8513 10753 / 52553 

31 Togo 98133 99958 94000 194153 

32 Uganda 101325 260000 200000 368356 

33 United Republic of Tanzania 955729 998000 1100000 1160821 

34 Zambia 59601 39581 / 83916 
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Figure 12. The linear fitting results between the 2023 rice planting area derived from this study and the existing statistical data, 

with mapping results as the x-axis and existing statistical data as the y-axis. The red dashed line represents the y = x line. (a) fitting 

results for all 34 countries, (b) fitting results for 30 countries after excluding those with missing data from the CARD dataset (c) 

fitting results for 27 countries after excluding those with missing data from the USDA dataset. 345 

The comparison between the calculated rice planting areas from mapping result and the rice intensity distribution data, 

alongside existing statistical data, reveals strong linear relationship, as shown in Fig. 12. For all 34 countries, the R² value for 

fitting with CARD data (2020/2021) is 0.9616, with FAO data (2022) is 0.9756, and with USDA data (2023) is 0.9431. After 

excluding countries with missing data, the R² for fitting with CARD data (30 countries) improves to 0.9781, while for USDA 

data (27 countries) it is 0.9385, demonstrating strong consistency. 350 

The figures and tables indicate that in countries with relatively low rice cultivation, the mapped areas generally exceed 

existing statistical data, shown as points below the y = x line in the fitting plot. In contrast, for countries with larger rice 

cultivation areas—such as the Democratic Republic of the Congo, Egypt, Guinea, Madagascar, Mali, and Tanzania—the 

mapped areas closely match existing statistics, with data points near the y = x line. While in Nigeria, the mapped rice 

cultivation area is significantly higher than existing statistics, represented by points far below the y = x line. 355 

These discrepancies may be attributed to several factors. In developing countries in Africa, data collection and reporting 

systems are often incomplete and inconsistent, leading to major gaps in the accuracy of reported rice cultivation areas. The 

issue is further compounded by the dominance of smallholder farming systems, where individual farm sizes are smaller and 

scattered, making them even harder to track and report on accurately. This often results in underreporting or outdated figures 

in official statistics. Additionally, rice cultivation in these regions has undergone rapid changes in recent years, with some 360 

areas seeing significant increases in planting that aren’t being fully captured by traditional reporting methods. Although 

multiple auxiliary datasets were integrated when constructing rice sample set for this study, the process still heavily relied on 

expert knowledge. This is particularly challenging in countries with limited rice cultivation, where rice fields are more 

difficult to identify, leading to sample errors that directly affect mapping accuracy. Moreover, the rice intensity distribution 

information used to estimate planting areas was published in 2017 and may not fully capture the present situation in 2023, 365 

contributing to discrepancies between the mapped data and reported cultivation areas.  

3.4 Classification accuracy on validation set 

The validation results for rice and non-rice classifications across 34 African countries provide a comprehensive insight into 

the model’s performance. The table displays key metrics, including user accuracy (UA), producer accuracy (PA), F1 scores, 

and overall accuracy (OA). Analyzing these metrics offers an understanding of the spatial variations and classification 370 

challenges encountered across different regions. 

Rice Classification Performance: 

User Accuracy (UA): The UA for rice classification ranges from 65.26% in South Sudan to 97.51% in Rwanda. The lower 

values in countries like South Sudan and Niger highlight challenges in correctly identifying rice fields, possibly due to 

fragmented land use or small cultivation areas. 375 
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Producer Accuracy (PA): The PA for rice classification spans from 70.78% in South Sudan to 93.17% in Guinea. Higher 

PA values indicate the model's ability to correctly classify most rice areas, while lower values in regions like South Sudan 

suggest a tendency for rice areas to be misclassified as non-rice. 

F1 Score: The F1 scores, combining precision and recall, vary from 67.91% in South Sudan to 94.54% in Guinea. While 

most countries maintain F1 scores above 80%, lower scores in regions like Angola and Niger highlight difficulties in 380 

balancing precision and recall. 

Non-Rice Classification Performance: 

User Accuracy (UA): The UA for non-rice ranges from 74.09% in South Sudan to 92.18% in Guinea, with most countries 

over 85%. High UA values across most countries indicate effective identification of non-rice areas. 

Producer Accuracy (PA): The PA ranges from 68.92% in South Sudan to 96.55% in Rwanda. Most countries exceed 80%, 385 

underscoring consistent performance, though lower values in South Sudan indicate difficulties in distinguishing non-rice 

areas. 

F1 Score: The F1 scores for non-rice range from 71.41% in South Sudan to 93.74% in Guinea. Countries with lower scores, 

such as Niger and Sudan, highlight specific regional challenges in sample set construction with very limited rice cultivation. 

Overall Accuracy (OA): 390 

The overall accuracy (OA) ranges from 69.76% in South Sudan to 94.17% in Guinea, with a mean of around 86.30%. 

Countries with extensive rice cultivation, such as Ghana and Senegal, show OAs above 90%, reflecting the model’s 

robustness in regions with more homogeneous and concentrated rice production. 

Key Insights and Implications: 

Regional Variations: The variations in accuracy metrics indicate that regional agricultural practices, land use complexity, 395 

and data quality play significant roles in model performance. Regions with small, fragmented rice fields or mixed cropping 

systems, such as South Sudan, Niger, and Angola, present classification challenges that lead to lower accuracy scores. 

Outliers and Challenges: The box plot (Fig.12) analysis reveals stable and consistent performance across most countries, 

with median values clustering between 85% and 90%. However, outliers such as South Sudan, Angola, and Niger show 

lower accuracy scores, suggesting that additional refinement is needed for these regions. 400 

Model Reliability: The overall consistency in accuracy metrics across most countries highlights the robustness of the rice 

mapping methodology. Future improvements could focus on addressing the specific challenges faced in regions with 

complex agricultural landscapes or limited data availability. 

The findings underscore the importance of tailored approaches when applying classification models across diverse African 

environments. Addressing regional discrepancies will be crucial in enhancing data accuracy and supporting better 405 

agricultural policy development across Africa.  
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Figure 13. Performance on validation set (a) heat map of validation accuracy across 34 African countries (b) corresponding box 

plot 410 

3.5 Comparison of rice mapping results with optical imagery 

Fig. 14 illustrates the comparison between the rice mapping results and corresponding optical image for selected regions in 

nine major rice-producing countries in Africa (with rice field areas exceeding 500,000 hectares). The examples include both 

concentrated plantation zones and dispersed smallholder farming areas. The results show a strong alignment between the 

mapped outputs and the optical images. Additionally, due to the incorporation of the object-based segmentation step, the 415 

mapping results exhibit clear boundaries, minimal scattered noise, and fewer misclassifications. 
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Figure 14. Examples of rice mapping results and corresponding optical imagery for major rice-producing countries in Africa. For 

each country, the first row shows the optical imagery (from ©Google Earth), while the second row presents the rice mapping 

results, with green areas representing rice fields. 420 
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5 Discussion 

5.1 Strengths and limitations 

To produce large-scale, high-resolution rice distribution maps across Africa, this study proposed a method effectively 

combining Sentinel-1 SAR and Sentinel-2 optical imagery, addressing key challenges in sample collection and classification. 

By leveraging time-series statistical features from Sentinel-1 VH data for initial fast coarse positioning of potential rice-425 

planting areas and complementing this with visual interpretation using auxiliary datasets, the study efficiently generates 

reliable samples. During the classification phase, the approach integrates object-based segmentation results from Sentinel-2 

optical time-series data with feature importance guided Random Forest classification results from Sentinel-1 SAR time-

series data. This combination enhances the precision of rice paddy boundaries and reduces noise in heterogeneous 

landscapes. 430 

Despite these strengths, the study acknowledges limitations related to the SNIC algorithm, particularly in the calibration of 

key parameters—seed distance and neighbourhood size, which affects the size and definition of segmented objects. In this 

study, it was primarily achieved through a process of trial and visual inspection. While this method provided a practical 

solution within the context of this research, it lacks the precision and reproducibility necessary for wider application. Future 

research should focus on developing more systematic approaches to parameter optimization. This could involve the use of 435 

automated tuning algorithms or machine learning techniques that adjust parameters dynamically based on the characteristics 

of the input data, thereby improving the accuracy, consistency, and scalability of the segmentation process. 

Additionally, the study highlights regional variations in the importance of specific features for rice mapping across Africa. 

Despite these variations, temporal statistical features from SAR data—particularly VH, VV, and PRVI—consistently 

demonstrated their utility in capturing the temporal dynamics of rice cultivation. By further exploring and experimenting 440 

with these temporal SAR features, future studies could refine rice detection models to be more sensitive to regional 

differences and temporal changes in Africa. This could involve integrating these features with additional data sources, such 

as optical imagery or other environmental variables, to create more robust and comprehensive mapping models. Such 

advancements would not only improve the accuracy of rice mapping in Africa but also contribute to better agricultural 

monitoring and decision-making at a broader scale. 445 

5.2 Progress and gaps in the National Rice Development Strategy (NRDS) of CARD countries towards 2030 targets  

Comparing existing rice planting/harvesting statistics from African countries with the rice planting area results obtained in 

this study reveals that although rice cultivation in most African countries has fluctuated, there is still a slow upward trend. 

This aligns with the policy direction of promoting rice cultivation in these countries, though there remains a significant gap 

to achieve the 2030 Rice Research and Innovation Strategy for Africa target. Among the countries assessed, 15 have 450 

achieved over 80% of the 2030 target, 5 have achieved 60–80%, 7 have achieved 40–60%, and 3 have achieved less than 

40%. Of the 9 countries with completion rates below 60%, Tanzania, Senegal, Sierra Leone, and Burkina Faso currently 
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have substantial rice cultivation areas (greater than 200,000 hectares) but have set high targets. Ethiopia, Liberia, Sudan, 

Niger, and Kenya have smaller targets but still lag in their current rice cultivation. Countries should develop and adjust their 

rice cultivation strategies accordingly to achieve the “Transformation of Rice-based Agri-food Systems for Food and 455 

Nutrition Security in Africa” and enhance local food self-sufficiency, ultimately contributing to the SDG goal of zero hunger. 

Table 9. Current rice cultivation areas and 2030 targets for card countries (card 2022), sorted by completion percentage 

Num Country Result Target/Ha Ratio Region 

1 Angola 30375 11531 263% Central 

2 Central African Republic 70545 30350 232% Central 

3 Chad 501287 254580 197% Central 

4 Democratic Republic of the Congo 1523243 776000 196% Central 

5 Ghana 709060 372330 190% Western 

6 Burundi 102335 68244 150% Eastern 

7 Malawi 120866 82621 146% Eastern 

8 Uganda 368356 280000 132% Eastern 

9 Cameroon 403379 334764 120% Central 

10 Guinea-Bissau 178277 155046 115% Western 

11 Zambia 83916 80266 105% Eastern 

12 Rwanda 61969 60000 103% Eastern 

13 Togo 194153 193000 101% Western 

14 Benin 215851 242000 89% Western 

15 Gambia 206632 247009 84% Western 

16 Madagascar 1537131 2105690 73% Eastern 

17 Mozambique 415471 570272 73% Eastern 

18 Côte d'Ivoire 727320 1003580 72% Western 

19 Mali 914169 1283970 71% Western 

20 Guinea 1580359 2547881 62% Western 

21 Nigeria 4889668 8523687 57% Western 

22 United Republic of Tanzania 1160821 2200000 53% Eastern 

23 Senegal 384397 775053 50% Western 

24 Ethiopia 155157 327252 47% Eastern 

25 Burkina Faso 273063 627587 44% Western 

26 Sierra Leone 694314 1602103 43% Western 
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27 Liberia 135214 326183 41% Western 

28 Sudan 52553 142856 37% Northern 

29 Niger 85573 252507 34% Western 

30 Kenya 59220 222000 27% Eastern 

 

Figure 15. Comparison of current rice plating areas and 2030 targets for CARD countries 

6 Data Availability 460 

The 20m Africa Rice Distribution Map of 2023 can be accessed in the Zenodo data set from the following DOI: 

https://doi.org/10.5281/zenodo.13729353 (Jiang, Zhang et al. 2024). The spatial reference system of the data set is 

EPSG:4326(WGS84). 

7 Conclusion 

This study employs temporal SAR data and optical imagery, combined with object-oriented segmentation, and feature 465 

importance guided random forest algorithms, to conduct rice extraction experiments in 34 African countries with annual rice 
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planting areas exceeding 5,000 hectares, achieving 20-meter resolution spatial distribution mapping of rice in Africa for 

2023. The average classification accuracy on the validation set exceeded 85%, and the R² values for linear fitting with 

existing statistical data all surpassed 0.9, demonstrating the effectiveness of the proposed mapping method.  

This study marks the first time a high-resolution rice spatial distribution map has been generated for the entire African 470 

continent, offering significant advancements in monitoring rice cultivation patterns in the region. The map provides crucial 

data support for rice yield estimation, climate resilience assessments, and the development of targeted agricultural policies. 

Moreover, the insights derived from this research can aid in optimizing resource allocation, enhancing food security, and 

informing decision-making processes for stakeholders ranging from policymakers to local farmers across Africa. 
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